HSTS Supports Targeted Surveillance

Paul Syverson
U.S. Naval Research Laboratory
paul.syverson@nrl.navy.mil

Abstract

HTTP Strict Transport Security (HSTS) was introduced
to force clients to use HTTPS connections on sites that
support it, thus preventing Man in the Middle and other
attacks. HSTS has always been understood to potentially
allow sites to track visiting clients, but this security threat
has been considered outweighed by the security benefits
it provides. With specific examples, verified on a web-
site constructed to test them, we show that tracking is
far more significant than previously recognized. We also
demonstrate how to use our approach to censor individ-
uals or classes of visiting clients. Further, we describe
and demonstrate how third parties, such as site analytics
services, can track clients across multiple domains. We
discuss possible changes to allow users to control HSTS
settings and better manage their security, and we com-
pare and complement HSTS with HTTPS Everywhere, a
popular browser extension with similar goals.

1 Introduction

HTTP Strict Transport Security was introduced in 2009
to counter several threats including DNS hijack of site
access, redirection to an adversary controlled TLS pro-
tected site, and security protocol downgrading [7]. Users
might intentionally or accidentally initiate connections
to, for example, a website via HTTP when HTTPS was
available. (‘HTTPS’ indicates that HTTP communica-
tion is sent over an encrypted TLS connection.) The
goal was thus to force the client to request only TLS
connections to that domain and to fail any other con-
nections. Connections where there were problems in the
TLS handshake (for example, a domain name mismatch
or an unrecognized certificate authority) would fail with-
out giving the user an option to click through warnings.
The idea was to have the server securely send the client
an HSTS header to parse and store locally, instructing it
to behave as above in future connections to that domain.

Matthew Traudt
U.S. Naval Research Laboratory
matthew.traudt@nrl.navy.mil

HTTP Strict Transport Security (HSTS) was then rela-
tively quickly adopted as an IETF standard [8].

A trade-off of HSTS is that it allows a site to track
users: under HSTS a client attempting an HTTP connec-
tion to the site indicates that it has not visited the site
before. This tracking is not affected by the blocking or
removal of cookies, leading some to describe it as us-
ing “supercookies”. This was recognized as a potential
concern virtually from the start, but it was felt that the
advantages outweighed the disadvantages [4].

The trade-off has generally been recognized and occa-
sionally discussed over the years since adoption. But the
advantages have continued to win out, and today HSTS
is embedded in all major browsers and widely employed
by sites run by corporations, governments, organizations,
and individuals. In March 2018, Apple announced both
that they had seen such attacks deployed in the wild
against Safari users and that they had implemented mit-
igations against them. Discussions about incorporating
their mitigations into the HSTS standard are apparently
underway [2].

1.1 Contributions

We will show that the scope and significance of the
threats posed by HSTS have been hugely underappreci-
ated to date. Attacks that we have implemented work on
Safari and appear largely unaffected by deployed mitiga-
tions. Readers can verify this for themselves by visiting
our demonstration site. We describe and demonstrate the
use of HSTS settings for censorship of site visitors as
well. Further we show that it is not merely the visited
destination site that can do such tracking and censoring.
We describe and demonstrate how third parties, such as
advertisers, can use HSTS settings to track client behav-
ior across diverse, unrelated sites that the client visits.
Our demonstrated attacks also illustrate the use of the
max-age directive, which is required in HSTS headers,
to identify when the client last visited a site. This can be



significant information in itself but can also be used to fa-
cilitate additional classification and/or censoring of vis-
itors. Our demonstration site illustrates censoring users
by changing the contents of the page based purely on
HSTS headers placed on previous visits. We describe
the combination of HSTS information from various user
activities while visiting a site. Our analysis shows that it
is unlikely any mitigation to our attacks exist that does
not obviate the usefulness of sending HSTS headers.

We compare HSTS to a similar effort, HTTPS Every-
where [10]. HTTPS Everywhere (H-E) is immune to the
above attacks. Though our analysis indicates that the pri-
mary, dynamic use of HSTS is dangerous for users at
risk from general tracking or targeted surveillance and/or
censorship, there are also preferable features of current
HSTS that current HTTPS Everywhere lacks, as well as
ways they can be used to complement each other.

2 Basics of HSTS and HSTS Tracking

A client attempting a connection via HTTP to a
server supporting HSTS should be redirected to cre-
ate an HTTPS connection to that server’s domain.
Within the HTTPS connection, the server will send
an HSTS header instructing the client to subsequently
connect only via HTTPS. (HSTS headers sent over
HTTP are ignored to prevent Man in the Middle
(MitM) insertion or removal of them.) An HSTS
header has the format Strict-Transport-Security:
max-age=<expire-time>, with two optional directives
that we will discuss in Section 4.

The max-age directive gives the time in seconds that
the HSTS setting should be respected. After it has ex-
pired, a client visiting that site will have the same HSTS
behavior as one visiting the site for the first time. This
limits the tracking we mentioned in Section 1, and it al-
lows flexibility if, for example, the site is still transition-
ing to 100% HTTPS. Additionally, the site can change
max-age to O to tell clients to immediately expire the
relevant HSTS state.

As noted, an attempt to connect to an HSTS-
configured server via HTTP indicates that a client has
not visited that server previously (or recently). Building
on that, a web page could, for example, contain several
invisible images, each hosted on its own subdomain so
that each has the potential for an entry in the client’s lo-
cal HSTS state. The site can therefore present during a
client’s first visit HSTS headers on some subset of invis-
ible images, and then on subsequent visits build a vec-
tor comprised of one bit for each image and how it was
fetched (0 for over HTTP, 1 for over HTTPS). With thirty
images on a page, the site can uniquely identify over a
billion distinct clients [4].

Attacks that motivated HSTS assume an adversary

that can manipulate DNS and direct clients to the wrong
server, where the adversary can perform MitM attacks or
serve up censored/altered content. Users expecting DNS
manipulation from their network environment may be es-
pecially concerned about being censored or tracked on-
line. Thus the population most likely protected by HSTS
may also be a population more vulnerable and less will-
ing to accept the tracking that HSTS supports. Of course
users who are not worried about or aware of DNS ma-
nipulation may also be concerned about tracking.

Users concerned about an adversary tracking which
sites they visit might clear cookies; generally it is
straightforward how to do so in a browser interface.
HSTS, however, creates a so-called “supercookie” that
will persist even if cookies are cleared. —Depend-
ing on the browser, HSTS settings may not persist
when switching to or from private browsing mode or
when clearing temporary data by other means. What
clears HSTS state varies with browsers in a not en-
tirely predictable manner. For example, in Firefox one
can instruct the browser to “Forget About This Site”,
which will remove local HSTS state for the domain;
however, visiting about:preferences#privacy and
clearing recent history won’t remove local HSTS state
unless the “Site Preferences” box is checked. In
Chrome, removing an entry from history does not
clear the associated HSTS state; however, visiting
chrome://settings/clearBrowserData and check-
ing the “Cached images and files” box will. Even a
user monitoring HSTS settings might miss them: Firefox
only writes new HSTS settings to disk when the browser
closes. Numerous websites offer advice on how to clear
HSTS settings, and readers can explore this for their own
browsers following the guidance at our demonstration
site described below. That is not our point here. First,
any suggestion that users concerned about HSTS track-
ing simply remove HSTS settings is unrealistically facile
for ordinary users and current popular browsers. Second,
HSTS setting are applied automatically, and unlike cook-
ies, browsers do not offer any user-friendly way to sim-
ply ignore HSTS headers. Third, clearing HSTS settings
obviates the protections that creating them is supposed to
provide.

Though long recognized as a theoretical possibility, in
March 2018, Apple reported both observing such “super-
cookie” attacks against Safari users in the wild and mod-
ifications to Safari intended to counter them [2]. The so-
lution they describe has two parts. First, if the currently
loaded hostname is bar.bar.bar.bar.foo.com, then
attempts to set HSTS state are ignored except for those
applying to it exactly and to foo.com. Second, they use
Intelligent Tracking Prevention (ITP) to ignore attempts
to set HSTS state from any domain for which WebKit
blocks cookies, “such as [a domain that serves] an in-



visible tracking pixel” [2]. Three months later they an-
nounced “the ability to detect when a domain is solely
used as a ‘first party bounce tracker, meaning that it is
never used as a third party content provider but tracks
the user purely through navigational redirects. [...] ITP
2.0 detects such tracking behavior and treats those do-
mains just like any other tracker, i.e. purges their website
data” [15].

3 Surveiling and Censoring with HSTS

Apple’s countermeasures may prevent or sufficiently
mitigate the attacks they initially described. However,
we have implemented a variant attack that works despite
Apple’s mitigations. To set state we make links first tra-
verse a series of redirects each setting the desired HSTS
state before dropping the user off at their intended des-
tination. To check what state has been set previously,
we made resources such as images and CSS first traverse
a similar series of redirects before delivering the actual
content. Safari 11.1.1 permitted 16 redirects. Chrome
67.0.3396.99 permitted 19, while Firefox 61.0 and Tor
Browser 7.5.6 permitted 20 redirects. These and results
described below were gathered using the the latest sta-
ble versions of each browser in late June 2018. We also
tested using Safari Tech Preview Release 58, which be-
came available June 6 2018 and is intended to incorpo-
rate the ITP 2.0 mitigations mentioned just above. Our
test results were the same for Safari 11.1.1 and Safari
Tech Preview Release 58.

Given sixteen or more redirects, a basic version of
such an attack will permit partitioning users into at least
216 (65,536) buckets. Note that previous discussions of
HSTS tracking have described the number of unique in-
dividuals that can be identified, but it is not necessary
to uniquely identify individuals for this to be an effec-
tive surveillance technique. If servers keep a record of
client behavior and/or apparent client network location,
then they can combine this with the partition informa-
tion about returning visitors to further refine individua-
tion within a partition.

Simply partitioning client visits is of little real use by
itself, but it is not necessary for a malicious server to
retain logs of previous behavior to learn useful infor-
mation from client HSTS settings. By setting varying
max-age values on the HSTS headers of tracking do-
mains, a server can learn how long ago a returning client
last visited a site. This temporal information can be com-
bined with logs and the partitioning information from
those HSTS settings that would not yet have expired.
Files to demonstrate for oneself this and other results we
describe are available on GitHub. Details are given be-
low.

It might seem that, by limiting browsers to permit a

much smaller number of redirects, a workable trade-off
of user protections might still be achieved—if, for ex-
ample, only 32 buckets could be generated from redirec-
tion by loading a page. This overlooks important points,
however. First, loading a given page might involve the
loading of multiple legitimate resources (such as visible
images) that would be harder to separate off using Web-
Kit modifications such as Apple introduced. Assuming a
limit to five redirects, each of these is adding five bits to
the HSTS state vector for that page.

More importantly, however, any webpage that offers
users options to enter content or simply click on links
provides an opportunity to add to the HSTS setting in-
formation created by that site visit. Further, if the site
offers a navigation menu on all pages, it can offer differ-
ent redirection domains for menu items based on what
has been visited, and in what order, during that session.

For example, visiting www.eff.org and choosing
“Tools” first from the navigation menu could yield dif-
ferent HSTS state than visiting “Take Action” followed
by “Tools”. Similarly, if the user visits both “Issues” and
“Tools”, different state can be set based on the order in
which the user visited them. In general, each of the k!
ordered selection possibilities for kX menu items adds n
bits, given n permitted redirects per link and assuming no
menu item is selected more than once. Of course what
users are selecting is meaningful in itself besides sim-
ply increasing the number of identifiers or classifications
they can be assigned.

The above attacks are primarily hoovering attacks that
attempt to gather as much information as possible about
any site visitors [12]. But an adversary may also be inter-
ested in specific visitors, e.g., those that follow particular
links or enter certain keywords/information at parts of
the site. Such a targeting adversary can hold off on stor-
ing very much HSTS state until a user has been deemed
as worth targeting. Identifying the visitor as targeted
need not happen in realtime; but if the visitor is recog-
nized in realtime or deemed interesting either based on
behavior exhibited thus far in the session or based on ex-
ogenous information such as connection IP address, then
the redirects to set HSTS state can be optimized for re-
finement of classifying or identifying those users in fu-
ture sessions.

In addition to the targeted placement of HSTS settings,
the probing of site visitors for recognition or reidentifica-
tion can also follow a targeted strategy. Adversaries can
optimize the choice of initial HSTS state for which to test
based on which targets are of greatest or most current in-
terest. Similarly, they can optimize these to the expected
next links most likely to be selected by targeted users,
and they can optimize the domains to redirect through
when those links are clicked on, just as when initially
reconnecting to the homepage.



We have so far been describing customization of
HSTS settings to facilitate tracking and classification of
either targeted users or all users. Such customization
can also be used to censor users by modifying the con-
tent/services offered on a site. Specifically, if a user’s
HSTS state reveals that they’re an interesting user (per-
haps because of a series of links visited previously), then
the site owner can choose to simply not present (effec-
tively block) or alter content/services offered. This is
also an especially strong support for our earlier point that
it is not necessary to precisely identify the specific previ-
ous individual visitor for HSTS tracking to be effective.
If the current visitor can be recognized as having pre-
viously been interested in a type of content or service
or having followed a type of site-visitor behavior, that
is enough to censor their current visit. And as before,
though HSTS state is enough, this could also be used in
combination with other available information about the
visitor, such as IP address, browser fingerprint, server
logs of previous sessions, etc.

Finally, we have also so far only been describing track-
ing or censoring users within a single site. An ad net-
work, Content Delivery Network (CDN), site analytics
service, or in general any party that has its resources
loaded into a wide variety of websites can track or censor
users across many sites.

3.1 Demonstrations and browser tests

We set up a site and performed tests to determine results
and demonstrate attacks described above.

For readers who wish to set up their own test pages
to determine the number of redirects a browser permits,
HTML files are available at https://github.com/
pastly/satis-hsts-tracking along with a readme
file describing how to use them.

We created a simple demonstration of both cross-
domain tracking and cross-domain censorship using only
HSTS settings—no cookies or other tracking mecha-
nisms. In our demonstration, first we visit https:
//pastly.xyz/testO1.html and take note of the
Chrome browser logo there. Then we open http://
hsts.satis.system33.pw and click on the link to the
superuser . com page about how to check HSTS state in
Chrome. When we go back to pastly.xyz and refresh
the page, the Chrome logo has been replaced by an image
of a cat. In basic form, this works in Chrome, Firefox,
Safari, and Tor Browser.

All browsers seemed to respect keeping separate
HSTS state updated while in private browsing mode ver-
sus state updated while not in private browsing mode.
(Chrome calls private windows “incognito”.) And none
of these browsers stored HSTS updates from a pri-
vate browsing window once all private windows were

closed. Chrome and Firefox, however, did permit such
cross-domain tracking and censorship within browsing
sessions even between different private browsing win-
dows or tabs. Indeed, even if the http://hsts.
satis.system33.pw private window was closed and
only some unrelated private browsing window remained
open, HSTS state was preserved and manifested with the
appearance of a cat if https://pastly.xyz/test01.
html was subsequently opened. Thus, at the moment
users might not be getting the protection and separation
they expect from opening a new private browsing win-
dow in one of these browsers.

Safari did not permit cross-domain HSTS state to
bleed from one private tab to another, even during the
same browsing session. Tor Browser 7.5.6 did, but the
alpha version of Tor Browser available at time of writing
(8.0a9) no longer permitted such bleeding. Safari seems
to be separating state based on separate private tabs
whereas Tor Browser 8.0a9 seemed to separate based
on URL: HSTS state was accessible to new private tabs
within a session if they displayed the same URL as when
the HSTS state was set. This bleeding of cross-domain
state information also occurred when opening the first
connection in one Firefox tab group and the second con-
nection in a different Firefox tab group.

A minute-long video is available at https://
github.com/pastly/satis-hsts-tracking show-
ing a version of this censorship attack (but not cross-
domain), time-since-last-visit tracking via max-age, and
two of the ways users might try to clear website records
from Chrome—one removes HSTS state and the other
does not. Chrome 67.0.3396.99 and Firefox 61.0 permit-
ted such tracking from HSTS state that is loaded cross-
domain via CSS. Safari does not (whether in private
browsing mode or not). Tor Browser 8.0a9 loads HSTS
state via CSS, but as above appears not to permit other
domains access to it, only the domain that appeared in
the URL bar when it was set. Safari still accepts HSTS
headers received in response to clicks, so ad networks
can still set HSTS state when their ads are clicked on,
and in general JavaScript can be used to hijack clicks on
links and direct them into an HSTS-state-setting redirect
chain before dropping the user off at their intended desti-
nation. Another short video available there shows a CSS
cross-domain tracking attack. There is also a readme file
walking through the videos, along with configuration and
other files sufficient for readers to set up their own test
websites.

Note that when loading hsts.satis.system33.pw
or clicking on any of the links on the page that return
there, the entire loading process was at most a few sec-
onds, essentially indestinguishable from a normal user
experience when loading a webpage. And in no browser
did the redirects change what was displayed in the URL



bar at all. The one exception was that Safari showed
redirected links only when clicking on the link to start
the demo of time-of-last-visit tracking, and fleeting URL
bar displays of redirects are quite common when load-
ing webpages in general. Similarly, all browsers took at
most a few seconds in tests of the redirect chain length
mentioned above, and all but Safari displayed only the
ultimate destination URL in the URL bar. Again, this is
consistent with common experiences of surfing the web.
Thus, none of the attacks or examples from our demos
exhibit anything that would look or seem odd to ordinary
users, and mostly they were literally indistinguishable
from the normal experience of loading a static webpage.

The files we have made available on GitHub are de-
signed to support safe demonstrations of our results as
well as related testing. They cause storage of informa-
tion only on the client; no records of client visits are
retained on the server. The information stored on the
client is entirely HSTS state derived from HSTS head-
ers, though of course if we tracked user behavior this
could be combined. Finally, max-age for all headers
is at most 30 minutes since we are not actually inter-
ested in tracking visitors. There should be no HSTS
record on the client of having visited a demo site at all
beyond half an hour following the last visit. A site us-
ing our files will both demonstrate attacks and provide or
give links to instructions for how to find and/or remove
HSTS settings from Chrome, Firefox, Tor Browser, and
Safari. Since Safari stores HSTS settings in a binary file,
we have also provided a Python script to render it into
human-understandable form.

We do not intend in our current research to exten-
sively set out all the possible surveillance and censor-
ship variants that can occur from HSTS. And though
we have noted Apple’s claim of having detected HSTS
state attacks against Safari users in the wild [2], we have
not attempted to measure indications of how or to what
extent these attacks have moved beyond the anecdotal
stage. Our goal is simply to show how significant the
potential threat is in order to motivate change, so as to
prevent a situation where someone is publishing a pa-
per at FOCI 2025 documenting how these attacks have
been extensively used in the wild. And though we feel
that our analysis is straightforward and simple enough to
be compelling, we have also implemented simple exam-
ples of tracking and censorship and made available the
files needed to set up demonstrations of these for one-
self, along with videos walking through some of them.

4 Preemptively Bootstrapping HSTS

A client visiting an HSTS-enabled domain for the first
time will not automatically initiate connection to it
within the protection of TLS. Rather, a client initiating

an HTTP connection would be redirected to an HTTPS
connection, over which the server would send an HSTS
header. This first-time client could thus be just as vul-
nerable to MitM attacks as when visiting a non-HSTS-
enabled domain. The client is similarly vulnerable if it
visited the site further in the past than the max-age value
it had set for that domain. Further, published attacks on
HSTS have also described significantly altering NTP to
effectively expire the max-age setting [14].

To counter any attacks based on visiting sites for the
first time (or first time in a while), domain owners can
add the preload directive to the HSTS headers they
send, which will then satisfy one of the criteria to sub-
mit for entry on the HSTS preload list [9]. This HSTS
preload list is managed by Chrome, and most major
browsers use it. Browsers will use HSTS settings from
this list for connecting to any domain, even one that has
not been visited previously.

Having a site on the HSTS preload list does not pre-
clude the dynamic tracking and censorship attacks de-
scribed above. As we have observed, tracking can be
handled at a different domain. We were considering typ-
ical third parties such as advertisers or site analytics ser-
vices. But site owners can redirect to other domains they
themselves own even when loading the site homepage.
And as noted, in our tracking tests of browsers none dis-
played the URLSs of intermediate redirected domains, ex-
cept that Safari flashed these very briefly in the how-
recently-visited test. Thus there may be nothing at all
that is visible to the user, and, more certainly, nothing
that appears odd. (It is still feasible to display different
content to the visitor based on the identified HSTS bit
vector.)

Returning from tracking and censorship concerns to
MitM protection, adding a site to the HSTS preload list
is not a trivial undertaking. First, a site is only eligi-
ble if it can set a max-age of at least one year and must
also use the includeSubDomains directive, which will
thus require HTTPS for all subdomains (and nested sub-
domains). Guidance at the HSTS Preload site suggests
incremental testing taking at least a few months before
deploying [9]. Also, “inclusion in the preload list cannot
easily be undone. [...] Don’t request inclusion unless
you’re sure that you can support HTTPS for your en-
tire site and all its subdomains the long term.” Thus,
site owners must be prepared for potentially extensive
retooling and/or testing of their sites prior to requesting
to join the list, but they must also be confident that they
will have no reason to change any part of their site in an
HSTS incompatible way for a very long time. They must
similarly monitor all parts of their operation for acciden-
tal changes that would clash with being on the HSTS
preload list. Further, site owners who choose to go ahead
must monitor to make sure they remain on the list: “[...]



sites may be removed automatically in the future for fail-
ing to keep up the requirements.” This all makes adding
one’s site to the preload list a serious undertaking with
mixed incentives.

As a specific example, one of the authors recently re-
ceived a prompt to update an expiring system password
on a large enterprise site with hundreds of thousands of
registered users. Attempting to connect to the relevant
URL yielded a page that claimed the owner of the site,
“has configured their website improperly. [...] This site
uses HTTP Strict Transport Security (HSTS) to specify
that Firefox may only connect to it securely.” The do-
main of the visited site is not itself on the HSTS preload
list, but some of its pages redirect to a domain that is.
It remains unclear if there was any actual HSTS website
misconfiguration, per se. But some pages within the site
could be accessed while others effectively could not (in
one case depending on whether a terminal “/” was in-
cluded or not in the URL entered in the address bar).

Analysis of the state of HSTS deployment in 2013
showed improper configuration on many sites, leaving
them open to attacks HSTS is meant to counter [3]. This
is perhaps normal for any complex protocol less than a
decade from initial design and only a few years after
standaradization. Also, there has been much progress
since 2013, and HSTS is now set by shared service
providers such as CloudFlare. The study underscores,
however, that unless site administrators skillfully set up
and persistently maintain configuration of their sites,
they might not be getting the protection from HSTS that
they are expecting. And as already noted, if browsers
are configured to fail safely, they will not get the desired
functionality either.

HSTS preload guidelines recommend a months-long
process of configuration and testing before a site owner
requests addition to the list [9]. But, according to some-
one responsible for HSTS and preload rollout on multi-
ple large sites, “For most sites, once they’ve migrated to
HTTPS, adding HSTS support is straightforward. How-
ever, large and content-heavy sites with rich mixed con-
tent and disparate CMS backends may need to migrate
their website in chunks, rather than a full migration at
once, which would make HSTS difficult until site migra-
tion is complete. Many major news sites fit this cate-
gory.” And, “For most domains, once HSTS is in place,
preloading the domain is straightforward, even trivial.
However, domain names that are used for a sprawling
array of services (such as an organization’s primary ‘cor-
porate’ domain) may need to migrate their subdomains
in chunks, rather than migrating the entire zone at once,
which would make preloading difficult until the migra-
tion of all subdomains is complete. This is particularly
true of zones where split-horizon DNS is in use, and in-
tranet sites are used within the same zone as an organi-

zation’s internet-facing services.”

Still, it is generally over a month from request till a
site is added to the HSTS preload list, and then it can be
another month until that update makes its way to updated
client browsers [5]. For those putting a new site online
or newly making a site compliant with HSTS preload, it
would be better if they did not have to choose between
making the site available now versus protecting first time
visitors during the interval until their HSTS-preload sta-
tus is incorporated into most clients.

S HSTS and HTTPS Everywhere

HTTPS Everywhere [10] is a popular browser extension
that functions roughly like HSTS preload: any HTTP re-
quest for a URL covered by the HTTPS Everywhere (H-
E) ruleset is rewritten in the address bar to an HTTPS
request for the appropriate URL. (For some sites, this
is not always simply the original URL, and H-E rules
are more flexible than HSTS redirects.) If the “Block all
unencrypted requests” box is selected from the H-E tool-
bar GUI, then like HSTS, it will not be possible to load
unencrypted connections. (Unlike HSTS, it will still be
possible to grant an exception for TLS certificates from
unknown issuers by going into “Advanced” options in the
browser warning.) Like the HSTS includeSubDomains
directive, one can write H-E rules that require connec-
tions to any subdomains of a given domain to always be
via HTTPS. H-E rules are more flexible than HSTS, and
are much faster and easier to roll out, on the order of
days. In fact, HTTPS Everywhere rules used to be up-
dated only when a new version of the extension was re-
leased; however, recently the EFF announced “continual
ruleset updates” for H-E, meaning that the extension will
check with EFF to see if a new ruleset list is available
without having to wait for an extension update [1].

Currently, HTTPS Everywhere encourages site own-
ers to favor HSTS and joining the HSTS preload list
over adding HTTPS Everywhere rules for their sites [11].
The stated reason is because HSTS is built into all major
browsers, thus works by default for nearly all clients. H-
E, on the other hand, is an optional extension, thus has
a much smaller userbase. While that is true, given the
risk noted in the last section during the month(s) until a
request to put a site on the HSTS preload list is reflected
in browsers, it would be wise to add an H-E rule to the
default ruleset at least until the site has been on the HSTS
preload list for a bit.

The most important difference between HSTS and H-
E is that H-E does not allow servers to selective create
new settings at clients dynamically per connection and/or
based on activity during a connected session. Thus H-
E is not subject to the tracking or censorship that we
have seen is possible via HSTS. HTTPS Everywhere



rules are retrieved from the H-E ruleset given to all
clients. The new “continual ruleset” change does allow
customized rulesets or “update channels” that third par-
ties can use [1]. Care must be taken to evaluate the track-
ing potential of allowing multiple update channels, the
number of clients using a given update channel, and the
frequency of updates. Nonetheless, these updates are not
created in response to timing or pattern of access to par-
ticular domains. The HTTPS Everywhere interface al-
lows creation of custom rules for sites, but these are cre-
ated by the user, not given by the server.

HSTS settings are also not easy for users of most
browsers to discover, remove, or determine if they have
been removed. On the other hand, H-E rules, which ap-
ply to all HTTPS Everywhere enabled clients, are easily
discoverable. And a simple checkbox on the interface
allows users to turn HTTPS Everywhere on and off.

6 Conclusions and Recommendations

It may be possible to alter browsers to counter particular
attacks set out in Section 3, but the fundamentally inter-
active nature of dynamic HSTS makes it very unlikely
that there is a way to avoid the capability for significant
censorship and tracking of client behavior by site own-
ers or cross-domain by third parties. Users for whom
the tracking of online activity may have operational or
personal security implications may wish to completely
avoid accepting of HSTS headers, as might users simply
uncomfortable with the possibility that HSTS might be
used for tracking or to alter the content/service options
they are given. One might thus expect that Tor Browser
or other browsers placing a premium on safety will want
to block HSTS headers in the future, but this would be a
security trade-off not a pure win as long as many sites re-
main accessible by both HTTP and HTTPS. It may also
be desirable to have a default such as H-E’s GUI option
to block all unencrypted requests. That remains a secu-
rity/functionality trade-off on today’s Internet, though it
seems a diminishing one.

At the very least, browsers should provide a sim-
ple user-friendly way both to learn HSTS settings for
a domain and to remove them if desired. Chrome ap-
pears to be the only major browser to facilitate this
at all (by visiting chrome://net-internals/#hsts),
but not in the same place as are options for clearing his-
tory, cookies, or cached images (chrome://settings/
clearBrowserData), and it does not provide an in-
terface to simply clear all dynamically set HSTS state.
Removal of all HSTS settings in Tor Browser occurs
when “New Identity” is selected from the onion popup
UIL. More generally, it should also be possible and easy
for users to choose to have their browsers ignore HSTS
headers, either all headers or for specific domains. None

currently permit ignoring HSTS headers, though all will
drop HSTS state added in private browsing mode, once
all private browsing windows are closed.

Limiting HSTS to preloaded sites would prevent dy-
namic attacks while failing safe for clients attempting to
access such sites insecurely. As we have noted, however,
it currently requires substantial lead time for a site to be
added to this list. It is thus reasonable to add the site to
the H-E ruleset so that those clients with H-E installed
can be protected until the preload update takes effect.

If we do limit to a preload list, scaling becomes an-
other concern. Currently the HSTS preload list includes
on the order of fifty thousand domains, and the H-E rule-
set covers about half as many. These cannot scale up to
Internet size: while as of Feb 2018 about 10% of Alexa
Top 1M sites were using HSTS [6], as of June 2017, only
.337% of Alexa Top 1M sites were on the HSTS preload
list, though this was more than double the fraction as of
April 2016 [13]. Perhaps by the time scale is an issue, the
portion and significance of the web that is unencrypted
will be small enough that it can be ignored or only per-
mitted access by experts (or at least behind sterner warn-
ings and barriers).

Even if one chooses to live with the tracking and cen-
sorship threats of dynamic HSTS (possibly with manage-
ment options as we have described), this does not protect
against the first connection MitM threat for those sites.
One can install H-E and set it to block all unencrypted
requests. Besides the usability impact of this choice al-
ready noted, as long as dynamic HSTS is accepted, an
adversary can still create ways to track clients by noting
which subset of requests are received at all.

Forcing all connection requests to attempt HTTPS,
only reverting to HTTP if this fails, could maximize both
hijack and tracking/censorship protection with less like-
lihood of complete failure for unecrypted connections.
This will likely have a usability-impacting performance
cost for any resources still not reachable by HTTPS.
And, this may simply break functionality in some cases,
including where the HTTPS connections for a site are at
a different URL than the HTTP option (something that
H-E does support and for which rules currently exist).
Protocol and system changes to better provide clients se-
cure initial connections to websites without significant
tracking, censorship, functionality, or scaling issues will
require additional research.

Acknowledgments

The authors would like to thank the anonymous review-
ers as well as Bill Budington, Jennifer Helsby, Georg
Koppen, Eric Mill, Seth Schoen, and Ryan Wails for
helpful comments on drafts of this paper that greatly im-
proved it.



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

BUDINGTON, B. HTTPS Everywhere introduces new fea-
ture: Continual ruleset updates. https://www.eff.org/
deeplinks/2018/04/https-everywhere-introduces-

new-feature-continual-ruleset-updates, April 3 2018.

FULGHAM, B. Protecting against HSTS abuse.
https://webkit.org/blog/8146/protecting-against-
hsts-abuse/, March 18 2018.

GARRON, L., BORTZ, A., AND BONEH, D. The state of HSTS
deployment: A survey and common pitfalls. https://garron.
net/crypto/hsts/hsts-2013.pdf, 2013.

Chrome fixes STS privacy issue. https://web.archive.
org/web/20100417094217/http://ha.ckers.org/blog/
20100413/chrome-fixes-sts-privacy-issue/, April 13
2010.

HELME, S. Testing the HSTS preload process.
https://scotthelme.co.uk/hsts-preload-test/, July
22 2016.

HELME, S. Alexa Top 1 Million analysis - February 2018.
https://scotthelme.co.uk/alexa-top-1-million-
analysis-february-2018/, February 26 2018.

HODGES, J., JACKSON, C., AND BARTH, A. Strict transport
security. https://lists.w3.org/Archives/Public/www-
archive/2009Sep/att-0051/draft-hodges-strict-
transport-sec-05.plain.html, September 9 2009.

HODGES, J., JACKSON, C., AND BARTH, A. HTTP Strict Trans-
port Security (HSTS). https://tools.ietf.org/html/
rfc6797, November 2012.

HSTS preload list submission. https://hstspreload.org/.

HTTPS Everywhere.
https://www.eff.org/https-everywhere.

How do I add my own site to HTTPS Everywhere?
https://www.eff.org/https-everywhere/faq/#how-
do-i-add-my-own-site-to-https-everywhere.

JAGGARD, A. D., AND SYVERSON, P. Onions in the crosshairs:
When The Man really is out to get you. In ACM Workshop on Pri-
vacy in the Electronic Society (WPES ’17) (Dallas, Texas, USA,
October 2017), ACM.

KING, A. Analysis of the Alexa Top 1M sites.
https://blog.mozilla.org/security/2017/06/28/
analysis-alexa-top-1m-sites/, June 28 2017.

SELVI, J. Bypassing HTTP strict transport security. In Black
Hat Europe (2014). https://www.blackhat.com/docs/eu-
14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-
Transport-Security-wp.pdf.

WILANDER, J. Intelligent tracking prevention 2.0.
https://webkit.org/blog/8311/intelligent-
tracking-prevention-2-0/, June 4 2018.



